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Many natural records exhibit long-term correlations characterized by a power-law decay of the autocorre-
lation function, C�s��s−�, with time lag s and correlation exponent 0���1. We study how the presence of
such correlations affects the statistics of the extreme events, i.e., the maximum values of the signal within time
segments of the fixed duration R. We find numerically that �i� the integrated distribution function of the
maxima converges to a Gumbel distribution for large R similar to uncorrelated signals, �ii� the deviations for
finite R depend on the initial distribution of the records and on their correlation properties, �iii� the maxima
series exhibit long-term correlations similar to those of the original data, and most notably �iv� the maxima
distribution as well as the mean maxima significantly depend on the history, in particular on the previous
maximum. The last item implies that conditional mean maxima and conditional maxima distributions �with the
value of the previous maximum as condition� should be considered for an improved extreme event prediction.
We provide indications that this dependence of the mean maxima on the previous maximum occurs also in
observational long-term correlated records.
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I. INTRODUCTION

Extreme events are rare occurrences of extraordinary na-
ture, such as floods, very high temperatures, or earthquakes.
In studying the extreme value statistics of the corresponding
time series one wants to learn about the distribution of the
extreme events, i.e., the maximum values of the signal within
time segments of fixed duration R, and the statistical proper-
ties of their sequences. In hydrological engineering, for ex-
ample, extreme value statistics are commonly applied to de-
cide what building projects are required to protect riverside
areas against typical floods that occur once in 100 years.
Many exact and empirical results on extreme value statistics
have been obtained in the past years, for reviews see, e.g.,
�1–6�. Most of these results, however, hold only in the limit
R→� and are based on statistically independent values of
the time series. Both assumptions are not strictly valid in
practice. Since observational data are always finite, predic-
tions for finite time intervals R are required, and—most
importantly—correlations cannot be disregarded.

Figure 1 illustrates the definition of the series of maxima
�mj� , j=1, . . . ,N /R of original data �xi� , i=1, . . . ,N, within
segments of size R for R=365, i.e., for annual maxima if �xi�
represents daily data. According to traditional extreme value
statistics the integrated distribution of the maxima mj con-
verges to a Gumbel distribution �see Sec. II� for indepen-
dently and identically distributed �i.i.d.� data �xi� with Gauss-
ian or exponential distribution density �1–3�.

In recent years there is growing evidence that many natu-
ral records exhibit long-term persistence �7�. Prominent ex-
amples include hydrological data �8,9�, meteorological and
climatological records �10–14�, turbulence data �15,16�, as
well as physiological records �17–19�, and DNA sequences
�20,21�. Long-term correlations have also been found in the

volatility of economic records �22�. In long-term persistent
records �xi� , i=1, . . . ,N with mean x̄, and standard deviation
�x the autocorrelation function decays by a power law,

Cx�s� =
1

�x
2 ��xi − x̄��xi+s − x̄��

�
1

�x
2�N − s� 	i=1

N−s

�xi − x̄��xi+s − x̄� � s−�, �1�

where � denotes the correlation exponent, 0���1.
Such correlations are named “long term” since the mean

correlation time T=
0
�Cx�s�ds diverges for an infinitely long

series �in the limit N→��. Power-law long-term correlations
according to Eq. �1� correspond to a power spectrum P�f�
� f−� with �=1−� according to the Wiener-Kinchin theo-
rem. For studies of the effect of long-term persistence on the

FIG. 1. Definition of maxima: A time series �xi� , i=1, . . . ,N, of,
e.g., daily data is separated into segments of length R=365 days.
The maximum values mj ��� in each segment, e.g., annual
maxima, define another time series �mj� , j=1, . . . ,N /R.
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statistics of return intervals �in time� between extreme
events, see �23–25�.

In long-term correlated records, the central assumption in
the traditional extreme value statistics �1� is not fulfilled:
extreme events cannot be viewed a priori as uncorrelated
even when there is a long-time span between them. Recently,
there have been some approaches to include correlations in
the study of extreme value statistics. For the special case of
Gaussian 1/ f correlations in voltage fluctuations in GaAs
films extreme value statistics have been demonstrated to fol-
low a Gumbel distribution �26�. A somewhat different
asymptotic behavior was observed in experiments on turbu-
lence and in the two-dimensional XY model �27,28�, see also
�29�. Extreme value statistics have also been employed in
studies of hierarchically correlated random variables repre-
senting the energies of directed polymers �30� and in studies
of maximal heights of growing self-affine surfaces �31�. In
the Edwards-Wilkinson model and the Kardar-Parisi-Zhang
model for fluctuating, strongly correlated interfaces, an Airy
distribution function has been obtained as an exact solution
for the distribution of maximal heights very recently �32�.
On the other hand, the statistics of extreme height fluctua-
tions for Edwards-Wilkinson relaxation on small-world sub-
strates are rather described by the classical Fisher-Tippet-
Gumbel distribution �33�. Besides these recent results there
is a theorem by Berman �34� �see also �2,3�� stating that the
maxima statistics of stationary Gaussian sequences with cor-
relations converges to a Gumbel distribution asymptotically
for R→� provided that Cx�s�log10�s�→0 for s→�, which
holds for long-term correlations.

In this paper we focus on long-term correlated signals and
show numerically that �i� the asymptotic convergence of the
integrated maxima distribution to the Gumbel formula occurs
also for long-term correlated Gaussian or exponentially dis-
tributed signals �xi�, �ii� for finite R, the deviation of the
integrated maxima distribution from the asymptotics depends
significantly on the initial distribution of the data �xi� and
their long-term correlation properties, �iii� the maxima series
�mj� exhibit long-term correlations similar to those of the
data �xi�, and, most notably, �iv� the distribution density of
the maxima, the integrated maxima distribution, and the
mean maxima significantly depend on the history, i.e., the
previous maximum m0. The last item implies that the condi-
tional mean maxima and conditional maxima distributions
�with m0 as condition� should be considered for improved
extreme event predictions. We show that the conditional
mean maxima for observational data �35,36� have a similar
dependence on m0 as for artificial long-term correlated data.

The paper is organized as follows: In Sec. II we briefly
review the main results of traditional extreme value statistics.
In Sec. III we study the maxima distribution density and the
integrated maxima distribution for uncorrelated as well as
long-term correlated data with Gaussian and exponential dis-
tribution for several values of R in order to test the conver-
gence to the Gumbel distribution. In Sec. IV we investigate
the correlation properties of the sequence of maxima. Sec-
tions V and VI report our results for the conditional maxima
distributions and for the conditional mean maxima in artifi-
cial data as well as in real data. In Sec. VII we consider the

centennial quantile, used in a hydrological risk estimation for
centennial floodings, and discuss its interference by long-
term memory. In Sec. VIII we present a brief summary and
conclusions.

II. EXTREME VALUE STATISTICS FOR I.I.D. DATA

In classical extreme value statistics one assumes that
records �xi� consist of i.i.d. data, described by distribution
density P�x�, which can be, e.g., a Gaussian or an exponen-
tial distribution. One is interested in the distribution density
function PR�m� of the maxima �mj� determined in segments
of length R in the original series �xi� �see Fig. 1�. Note that
all maxima are also elements of the original data. The corre-
sponding integrated maxima distribution GR�m� is defined as

GR�m� = 1 − ER�m� = �
−�

m

PR�m��dm�. �2�

Since GR�m� is the probability of finding a maximum smaller
than m, ER�m� denotes the probability of finding a maximum
that exceeds m. One of the main results of traditional ex-
treme value statistics states that for independently and iden-
tically distributed �i.i.d.� data �xi� with Gaussian or exponen-
tial distribution density function P�x� the integrated
distribution GR�m� converges to a double exponential
�Fisher-Tippet-Gumbel� distribution �often labeled as type I�
�1–3,37�, i.e.,

GR�m� → G�m − u

�

 = exp�− e−�m−u�/�� �3�

for R→�, where � is the scale parameter and u the location
parameter. By the method of moments those parameters are
given by �=�R

�6/� and u=mR−ne� with the Euler constant
ne=0.577 216 �3,38–40�. Here mR and �R denote the
�R-dependent� mean maximum and the standard deviation,
respectively. Note that different asymptotics will be reached
for broader distributions of data �xi� that belong to other
domains of attraction �3�. For example, for data following a
power-law distribution �or Pareto distribution�, P�x�
= �x /x0�−k, GR�m� converges to a Fréchet distribution, often
labeled as type II. For data following a distribution with
finite upper endpoints, for example, the uniform distribution
P�x�=1 for 0	x	1, GR�m� converges to a Weibull distri-
bution, often labeled as type III. These are the other two
types of asymptotics, that, however, we do not consider in
this paper.

III. EFFECT OF LONG-TERM PERSISTENCE ON THE
DISTRIBUTION OF THE MAXIMA

We begin by studying how the convergence of the inte-
grated maxima distribution GR�m� towards the Gumbel dis-
tribution Eq. �3� is affected by long-term correlations in the
signal �xi�. Regarding the distribution density P�x� of the
signal, we compare results for a Gaussian distribution, P�x�
=1/ ��2��exp�−x2 /2� �−��x��� and an exponential distri-
bution P�x�=exp�−x� �0�x���. Artificial long-term corre-
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lated signals following these distributions can be generated
by the Fourier filtering method �see, e.g., �41�� and by the
Schreiber-Schmitz iteration procedure �42,43�, respectively.
In the Schreiber-Schmitz procedure we employed 1000 itera-
tions for each record of length N=221�2
106. We found
that our results do not depend on the number of iterations if
more than 100 iterations are used. We studied 150 configu-
rations for most plots.

Figures 2 and 3 compare the maxima statistics for uncor-
related and long-term correlated data ��=0.4, see Eq. �1��,
respectively. The results for Gaussian distributed data are
shown on the left and for exponential distributed data on the
right. In pannels �a� and �b� the unscaled distribution densi-
ties PR�m� of the maxima within segments of size R are
shown for several values of R. Since Eqs. �2� and �3� yield
that for R→�

PR�m� →
1

�
exp�− e−�m−u�/� −

m − u

�
� , �4�

the distribution densities PR�m� can be scaled upon each
other if �PR�m� is plotted versus �m−u� /�, see Figs. 2�c�,
2�d�, 3�c�, and 3�d�. In Figs. 2�e� and 3�e� it is shown that the
convergence towards Eq. �4� �continuous line� is rather slow
in the case of a Gaussian distribution of the original data. In
contrast, for an exponential distribution P�x� the limiting
Gumbel distribution is observed for both uncorrelated and

long-term correlated data already for quite small segment
sizes R. In Fig. 3�d� deviations occur only at very small R
values �R�10� where scaling breaks down due to the sharp
cutoff of the exponential distribution density P�x� at x=0. In
the long-term correlated case, where the correlation time T
diverges, the fast convergence is particularly surprising,
since the segment duration R can never exceed T. From a
theoretical point of view, we expect a convergence towards
the Gumbel limit only for very large R values. The reason for
this fast convergence may be a rapid weakening of the cor-
relations among the maximum with increasing values of R,
as we will see in the next section �Fig. 5�.

We conclude that the distribution P�x� of the original data
has a much stronger effect upon the convergence towards the
Gumbel distribution than the long-term correlations in the
data. Long-term correlations just slightly delay the conver-
gence of GR�m� towards the Gumbel distribution �3�. This
can be observed very clearly in the plot of the integrated and
scaled distribution GR�m� on the logarithmic scale in the bot-
tom pannels of Figs. 2 and 3.

Figure 4 shows a direct comparison of the distribution
densities PR�m� for uncorrelated and correlated Gaussian and
exponentially distributed data for R=365 �corresponding to
annual maxima�. The distributions for the long-term corre-
lated data exhibit a slight shift to the left and, in particular, a
significant broadening of the left tail. The reason for this is
that correlations cause some periods with many large values
xi and other periods with only relatively small values xi.

FIG. 2. Distributions of maxima in segments of length R for
uncorrelated data with �a�, �c�, and �e� Gaussian and �b�, �d�, and �f�
exponential distribution density P�x�. Pannels �a�, and �b� show the
distribution density function PR�m� of the maximum values for four
segment sizes R=6 �circles�, 30 �squares�, 365 �diamonds�, and
1500 �triangles�. Pannels �c�, and �d� show that a collapse of all four
curves to a single curve is achieved in both cases, when the m axis
is replaced by �m−u� /� and PR�m� is multiplied by the scale pa-
rameter �. The solid line is the Gumbel distribution density, Eq. �4�.
Pannels �e�, and �f� show the corresponding integrated distribution
GR�m� together with the Gumbel function Eq. �3�. Note that expo-
nential records converge to the Gumbel distribution much faster
than Gaussian records.

FIG. 3. Distributions of maxima in segments of length R for
long-term correlated data with �=0.4; for explanations of the plots
and the symbols see Fig. 2. The curves in �a�, and �b� appear
broader than in Fig. 2, because in correlated data more small m
values are considered in PR�m� than in uncorrelated data. In �d� the
curve for R=6 �circles� differs most from the theoretical curve for
uncorrelated data, an effect caused by the correlations together with
a rather small R value: the left tail of PR�m� is strongly affected by
the abrupt left end of the exponential. For larger R values this effect
disappears and the Gumbel distribution is well approached. For the
Gaussian data in �c�, and �e�, the Gumbel law �solid line� is again
not well approached.
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When picking the annual maxima from the correlated data
the periods where small xi values dominate will yield rather
small annual maxima compared with uncorrelated data; this
leads to the broadening of the left tail of PR�m�. The largest
events are still identified as annual maxima, and hence the
right tail of the distribution density is hardly affected by
correlations. Figure 4 clearly illustrates that the probability
of a maximum exceeding an arbitrary but sufficiently large
value m*, ER�m*� �see Eq. �2��, is not significantly different
for correlated and uncorrelated data, for both the P�x� Gauss-
ian and exponential.

IV. EFFECT OF LONG-TERM PERSISTENCE
ON THE CORRELATIONS OF THE MAXIMA

The distributions of maxima considered in the previous
section do not quantify, however, if the maxima values are
arranged in a correlated or in an uncorrelated fashion, and if
the clustering of maxima may be induced by long-term cor-
relations in the data. To study this question, we have evalu-
ated the correlation properties of the series of maxima �mj�,
j=1, . . . ,N /R, of long-term correlated data with Gaussian
and exponential distribution. Figure 5 shows representative
results for the maxima autocorrelation function

Cm�s� =
��mj − mR��mj+s − mR��

��mj − mR�2�
, �5�

where mR denotes the average maximum value in the series,
and � � is the average over j similar to Eq. �1�. The compari-
son with the scaling behavior of the autocorrelation function
Cx�s� of the original data �xi� �see Eq. �1�� that follows a
power-law decay, Cx�s��s−� with �=0.4, reveals the pres-
ence of long-term correlations with a correlation exponent
���� in the maxima series. Hence, large maxima m are
more likely to be followed by large maxima and small
maxima are rather followed by small maxima, leading to

clusters of large and small maxima. We note that a similar
behavior has been observed for the series of return intervals
between extreme events �23–25�.

Figure 5 shows also that the series of maxima for the
same R values appear less correlated for exponential data
than for the Gaussian data. Due to a wider distribution of the
maxima in the exponential case �see Fig. 4� the autocorrela-
tion function Cm�s� is lower for the maxima of exponential
data compared to the maxima of Gaussian data.

Figure 6 shows that the deviations of the autocorrelation
function Cm�s� from a power-law fit with slope �=0.4 for
large values of R and s are presumably caused by finite-size
effects. They become significantly smaller as the length N of
the series is increased. In the case of uncorrelated data, the
series of maxima is also uncorrelated, Cm�s�=0 for s�0 �not
shown�.

V. CONDITIONAL MEAN MAXIMA

As a consequence of the long-term correlations in the se-
ries of maxima �mj�, the probability of finding a certain value
mj depends on the history, and, in particular, on the value of

FIG. 4. Comparison of the distribution density PR�m� of the
maxima for uncorrelated �circles� and long-term correlated ��=0.4,
squares� data for fixed R=365. For both �a� Gaussian and �b� expo-
nentially distributed �xi�, the long-term correlations lead to a similar
broadening of the left tail, while the right tail is hardly affected by
correlations. In �a�, the probability ER�m*� of finding a maximum m
larger than an �arbitrary but sufficiently large� m*=3.3 is 0.14 for
correlated data �gray area� compared with 0.16 for uncorrelated
data, and in �b� 0.18 for correlated data compared with 0.2 for
uncorrelated data for m*=7.4. The difference in the probabilities
ER�m*� for large m* is marginal.

FIG. 5. Autocorrelation function Cm�s� of the maxima �mj� of
�a� Gaussian and �b� exponentially distributed �xi� for different R
values, R=6 �circles�, R=30 �squares�, R=365 �diamonds�, and R
=1500 �triangles�. The autocorrelation function Cx�s� of the original
data �xi� �crosses� shows the slope −�=−0.4.

FIG. 6. Study of finite-size effects in the autocorrelation func-
tion Cm�s� of sequences of maxima �mj� for Gaussian distributed
�xi� with �a� R=365 and �b� R=1500. The set lengths are N=221

�circles�, 220 �squares�, 219 �diamonds�, and 218 �triangles�. The de-
scent of the slopes of Cm�s� from the slope of the straight line
�−�=−0.4� with decreasing set length seems to be a finite-size
effect.
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the immediately preceeding maximum mj−1, which we will
denote by m0 in the following. This effect has to be taken
into account in predictions and risk estimations. For a quan-
titative analysis we consider conditional maxima as illus-
trated in Fig. 7, where all maxima following an m0�6
�within the gray band�, i.e., the subset of maxima which
fulfill the conditions of having a preceeding maximum close
to m0, are indicated by circles. The width �m0 sketched by
the gray band around m0 in Fig. 7 is set such that a sufficient
number of approximately 700 conditional maxima is ob-
tained for each record. The corresponding conditional mean
maximum value mR�m0� is defined as the average of all these
conditional maxima. Note that mR�m0� will be independent
of m0 for uncorrelated data.

Figure 8 shows the conditional mean maxima mR�m0� ver-
sus m0 for long-term correlated Gaussian and exponentially
distributed data for four values of R. Of course, the mean
maxima are larger for larger segment sizes R. This depen-
dence is also observed for the unconditional mean maxima
indicated by horizontal lines in Fig. 8. In addition to this

trivial dependence, the conditional mean maxima signifi-
cantly depend upon the condition, i.e., the previous maxi-
mum m0, showing a clear memory effect. Evidently, this de-
pendence is most pronounced for the small segment
durations R=6 and 30. However, it is still observable for the
large R=365 �most common for observational daily data�
and even R=1500 �beyond common observational limits�.
Note that the results for Gaussian and exponentially distrib-
uted data agree only qualitatively: while the m0 dependence
of mR�m0� is quite close to a linear dependence for the
Gaussian data, there seems to be significant curvature for the
exponentially distributed data, which is a remnant of the
asymmetry of the exponential distribution.

Next we test our predictions on real records which are
known to exhibit long-term correlations. We have studied
two data sets, �i� the annual data of the Nile river water level
minima �8,35� and �ii� the reconstructed northern hemisphere
annual temperatures by Moberg �36�. The Nile series is com-
posed of 663 minimal water levels of the Nile river for the
years 622 to 1284 �we use the last 660 data points�, to the
best of our knowledge, measured at Roda gauge near Cairo.
Since the Nile data consist of annual minima, we study ex-
treme minima instead of maxima. The northern hemisphere
temperature reconstruction in degree Celsius after Moberg
covers the period from 1 AD to 1979 AD �we use the last
1968 data points� and was last updated in February 2005.
The correlation properties of both records have been shown
elsewhere �8,24,44� to be characterized by Cx�s��s−� with
��0.3 �see Eq. �1��.

In order to get sufficient statistics for the conditional
means mR�m0�, we have considered six m0 intervals for each
value of R and have set the width �m0 of the band around m0
such that there are no gaps between the bands. Figure 9
shows the results for three values of R, R=1, 6, and 12 years.
In all cases, the effect of the long-term correlations �persis-
tence� on the conditional mean minima and maxima mR�m0�
is clearly visible for both records: the conditional means are
smaller for smaller condition value m0 and larger for larger
condition value.

To prove that the dependence upon m0 is indeed due to the
long-term correlations in the records, we have also studied
randomly shuffled surrogate data, where all correlations are
removed. As shown by the open symbols in Fig. 9 the m0
dependence completely disappears, indicating that the depen-
dence was due to the correlations in the data.

VI. CONDITIONAL MAXIMA DISTRIBUTIONS

The quantity mR�m0� is the first moment of the conditional
distribution density PR�m �m0�, which is defined as the distri-
bution density of all maxima mj that follow a given maxi-
mum value m0 �mj−1�m0, see Fig. 7�. Figure 10 shows
PR�m �m0� for two values of m0 and again for Gaussian as
well as for exponentially distributed long-term correlated
data sets with �=0.4 and R=365. When compared with the
unconditional distribution density PR�m�, the long-term cor-
relations lead to a shift of PR�m �m0� to smaller m values for
small m0 and to larger m values for large m0, respectively.
The conditional exceedance probability

FIG. 7. Definition of the conditional maxima. In the sequence of
�annual� maxima only those m values �indicated by circles� are
considered, which directly follow a maximum of approximate size
m0�6 �gray band�. The new sequence of m values is the sequence
of the conditional maxima.

FIG. 8. Mean conditional maxima mR�m0� for �=0.4 and R=6
�circles�, R=30 �boxes�, R=365 �diamonds�, and R=1500 �tri-
angles� versus m0 for �a� Gaussian and �b� exponential data. The
straight lines represent the unconditional means mR for a given R.
The width �m0 for the condition m0 was chosen such that approxi-
mately 700 m values were obtained for each m0 in each of the 150
runs of N=221 data points. Both figures show the memory effect in
the form of mR�m0��mR for rather large m0 �above mR� and
mR�m0��mR for rather small m0 �below mR�.
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ER�m�m0� = �
m

�

PR�m��m0�dm� �6�

defines the probability of finding a maximum larger than m
provided that the previous value was close to m0. We find a
strong dependence of ER�m �m0� upon the condition m0. Con-
sequently, the difference between the unconditional prob-
abilities ER�m� �see Fig. 4� and the corresponding conditional
probabilities ER�m �m0� depends strongly on m0 in the pres-
ence of long-term correlations.

Next we quantify the effect of long-term correlations
upon ER�m �m0� for different conditions m0 and different m
values. Figure 11 shows the exceedance probability
ER�m �m0� for six m values versus m0. The m values were
chosen such that the corresponding unconditional probabili-
ties are ER�m�=0.9, 0.5, 0.3, 0.1, 0.05, and 0.01, respec-
tively. For the Gaussian data and m corresponding to
ER�m�=0.5 the curve ER�m �m0� varies by a factor of 2 de-
pending on m0, while the variation does not exceed a factor
of 1.5 for the exponential data.

In general, the memory effect caused by the long-term
correlations seems to be the strongest for intermediate m
values. For ER�m�	0.5, the larger the m value �i. e., the
lower the curve in Fig. 11� the smaller is the apparent effect
of the correlations on the difference between the conditional
probabilities ER�m �m0� �symbols� and the unconditional
probabilities ER�m� �straight lines�. Hence, Fig. 11 may sug-

gest that the memory effect will disappear for very large m
values. This, however, is not true. Figure 12 shows the ratios
of the conditional exceedance probabilities ER�m �m0� and
the unconditional exceedance probabilities ER�m�. The figure
clearly shows an increase of the memory effect for larger m

FIG. 9. �a�–�c� Mean conditional minima mR�m0� for the annual
data of the Nile river water level minima �squares� �35� and �d�–�f�
mean conditional maxima for the reconstructed northern hemi-
sphere annual temperatures after Moberg �circles� �36�, for �a� and
�d� R=1 year �b� and �e� R=6 years, and �c� and �f� R=12 years.
The filled symbols show the results for the real data and the open
symbols correspond to surrogate data where all correlations have
been destroyed by random shuffling. The shuffled data have a dif-
ferent m0 range due to the broadening of the left tail of PR�m� in the
correlated data �see Fig. 4�. The unconditional mean minima �a�–�c�
and maxima �d�–�f� are indicated by dashed lines; the long-dashed
lines correspond to the shuffled data.

FIG. 10. �a� Conditional distribution density PR�m �m0� of maxi-
mum values taken from correlated Gaussian data ��=0.4� with
R=365 and m0=2.06 �circles� as well as m0=3.55 �squares�. �b�
shows the same as �a� for exponentially distributed data with
m0=4.10 �circles� and m0=8.65 �squares�. The width �m0 around
m0 is set such that a sufficient number of approximately 700 con-
ditional maxima is obtained for each of the 150 data sets considered
here. The probability ER�m* �m0� to find a m value larger than an
arbitrarily given m* �see Eq. �2�� also depends on the history m0.
For example, in �a�, E365�3.30 �2.06�=0.08 �gray area� is signifi-
cantly smaller than E365�3.30 �3.55�=0.20 �black area plus gray
area�, and in �b� E365�7.35 �4.10�=0.14�E365�7.35 �8.65�=0.24.

FIG. 11. Conditional exceedance probabilities ER�m �m0� to find
a maximum larger than a given m for �a� Gaussian and �b� expo-
nentially distributed data with �=0.4 and R=365 versus the condi-
tion m0. The straight lines indicate the corresponding unconditional
exceedance probabilities ER�m�. The six m values were chosen such
that ER�m�=0.9 �circles, m=2.15 for Gaussian and 4.40 for expo-
nential data�, 0.5 �squares, m=2.75 and 5.95�, 0.3 �triangles up,
m=2.95 and 6.70�, 0.1 �diamonds, m=3.35 and 8.00�, 0.05 �tri-
angles down, m=3.55 and 8.75�, and 0.01 �crosses, m=3.95 and
10.40�. Each point in the graph is based on a statistics of 500 con-
ditional m values and averaged over 150 runs of N=221 data points.
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values, i.e., for more extreme events. This increase seems
weaker for exponentially distributed data than for Gaussian
distributed data due to the less correlated maxium series of
exponential data; however the tendency is the same. As Fig.
12 shows ER�m �m0� can differ up to a factor of 2 from ER�m�
when considering the history m0 in the presence of long-term
correlations �with �=0.4�. This effect has to be taken into
account in predictions and risk estimations of large events.

VII. ESTIMATION OF CENTENNIAL EVENTS
IN LONG-TERM CORRELATED RECORDS

In this section we discuss how the size of typical centen-
nial events, i.e., typical maxima that occur once in 100 years,
can be determined in practice. Such values are commonly
used, e.g., in hydrological risk estimation for centennial
floodings. If all distributions P�x� and PR�m� of the consid-
ered time series were known exactly, i.e., for infinitely long
records, two alternative definitions of typical centennial
events would be possible as illustrated in Fig. 13�a� and
13�b�.

The first definition of a typical centennial event �see Fig.
13�a�� considers the distribution density P�x� �here: a Gauss-
ian distribution of xi, representing daily data� and determines
the quantile q36 500 �dashed line� that is exceeded by only
1/36500 of all values of the distribution, i.e., on average xi
�q36 500 occurs once in 100 years=36 500 days. For this
definition the distribution P�x� must be known for very rare
events. Moreover, since q36 500 is based only on the distribu-
tion of the values xi, it is unaffected by possible correlations
and clustering of centennial events �see �23,24��. This defi-
nition takes into account all events that exceed the quantile,
regardless of whether they occur within the same 100 years
period or not.

The second definition of a typical centennial event �see
Fig. 13�b�� considers the distribution density P36 500�m� of
the centennial maxima m within periods of 100 years �histo-
gram in the figure� and determines the mean centennial
maximum value m36 500 as the first moment of this distribu-
tion �dashed line�. Clearly, this definition includes the effects
of correlations, but multiple exceedances of the threshold
within one period of 100 years are not regarded in m36 500 by
definition. Still, many centennial events must have occurred
in the record �xi� to allow the determination of P36 500�m�.

In real data, however, the number of values obtained from
records with typical durations of 30, 50, or 100 years is not
sufficient to study the distribution densities P�x� or PR�m� in
order to determine directly the size of centennial events by a
calculation of q36 500 or m36 500. It is usually not known a
priori if even one centennial event occurred within the ob-
servational period. This makes it very difficult to estimate the
size of a typical centennial event. Therefore, a practical defi-
nition is needed. This third definition assumes that P�x� is
�most likely� in the domain of attraction of the Gumbel dis-
tribution. Then one applies the Gumbel fit formula Eq. �4� to
the distribution density PR�m� of maxima m within �smaller�
segments of size R=365 days and approximates the typical
centennial event from this Gumbel fit. This procedure is il-

lustrated in Fig. 13�c�, where the histogram P365�m� of an-
nual maxima and a fitted Gumbel curve �solid line� are
shown. It is common practice in hydrology to estimate the
size of a typical centennial event by calculating the threshold
Q100 �dashed line in Fig. 13�c��, which is exceeded by only
1/100 of the fitted Gumbel distribution of annual maxima
�38,40�. In terms of the integrated Gumbel distribution
G365�m� �see Eqs. �2� and �3�� this definition corresponds to
G365�Q100�=0.99, which yields Q100=u−� ln�−ln 0.99�, i.e.,

FIG. 12. Ratios of the conditional and unconditional exceedance
probabilities ER�m �m0� and ER�m� to find a maximum larger than m
for �a� Gaussian and �b� exponentially distributed data with �=0.4
and R=365. The symbols and the statistics are the same as in Fig.
11 except for the data corresponding to ER�m�=0.05 �triangles
down�, which are not shown here to avoid overlapping symbols.
The effect of long-term correlations seems to be strongest for the
largest m �crosses�: depending on m0 , ER�m �m0� varies from 0.4 up
to 1.7 for Gaussian data, i.e., by a factor greater than 4. For expo-
nential data this factor is still greater than 2.

FIG. 13. Definition of centennial events: �a� the tail of a Gauss-
ian distribution P�x� �solid black line� with the 1/36 500 quantile
�dashed line�, �b� the Gaussian tail �solid black line� and the histo-
gram P36 500�m� of centennial maxima with the average m36 500

�dashed line�, and �c� the histogram P365�m� of the annual maxima
and the corresponding Gumbel fit �Eq. �4�, solid line� with its 1 /100
quantile Q100 �dashed line, Eq. �7��. The deviations of the fit from
the histogram are caused by the underlying Gaussian distribution,
for which R=365 is not sufficiently large to reach the Gumbel limit.
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Q100 = m365 − �ln�− ln 0.99� + ne�
�6

�
�365 �7�

or Q100�m365+3.14�365 �38,40�. Here, m365 and �365 denote
the annual average and its standard deviation, respectively,
which are easily accessible also in short records. The three
definitions for centennial maxima, q36 500, m36 500, and Q100
�most regarded in hydrology�, are similar, but differ slightly
depending on the underlying correlation structure of the data,
as we will show now.

Figure 14 compares the quantile q36 500, the distribution
density P36 500�m� of centennial maxima, and the distribution
of Q100 values for correlated and uncorrelated Gaussian dis-
tributed data. To obtain a similar statistical basis for both,
P36 500�m� and the distribution of Q100, segments of length
36 500 days �100 years� should be considered for each of the
Q100 values. This was done for the data shown by filled
circles in Fig. 14. However, since real observational records
are often shorter, Fig. 14 also shows the distribution of the
Q100 values based on segments of 10 950 days �30 years,
squares�. One can see that P36 500�m� and also the corre-
sponding �actual� mean centennial maximum m36 500 are less
affected by the considered long-term correlations than the
estimated centennial events Q100 based on Gumbel fits, while
the quantile q36 500 is independent of correlations. Note also
that the shift of the Q100 histogram due to the correlations is
larger in contrast to the small shift of the P36 500�m� histo-
gram. For P36 500�m� we observe mainly a broadening caused
by the correlations �see Fig. 4�. The shift of the Q100 histo-
gram to the right is probably caused by the influence of the
scale parameter in the fit formula, i.e., by the standard devia-
tion �365 that appears in Eq. �7�. In addition, for the quantity
Q100 a broadening of the histogram is observed for the cor-
related data, leading to a less accurate estimation of the typi-
cal centennial event. However, the distribution of the Q100
values still remains significantly narrower than P36 500�m�,
which indicates that—for single records comprising just
about 100 years—typical centennial events can be approxi-

mated somewhat more reliably using Q100 instead of the
single maximum m picked from the record. The estimations
of centennial events via Q100 based on just 30 years �Fig.
14�c� and 14�d�� are similarly reliable as those via the maxi-
mum picked from a 100 years series.

In order to compare the dependence of the actual and
estimated sizes of centennial events and the accuracy of their
estimation in long-term correlated records quantitatively, we
have studied histograms like those in Fig. 14 for artificial
data characterized by different correlation exponents �. Fig-
ure 15 shows, as a function of �, the constant value q36 500
�as defined in Fig. 13�a��, the �actual� mean centennial maxi-
mum m36 500 �diamonds� with the corresponding standard de-
viation �36 500 and the mean estimated centennial maximum
�Q100� with its standard deviation. Again, each single value
Q100 is calculated for a segment of length 10 950 days
�30 years� in Fig. 15�a� �squares� and 36 500 days
�100 years� in Fig. 15�b� �circles�. The quantity q36 500 is
�trivially� independent of the long-term correlations, because
it is based only on the distribution density P�x�, and can
hardly be calculated in practice, because P�x� required for
the calculation is usually not known. In contrast to q36 500,
m36 500, and even more �Q100� are significantly affected by
strong long-term correlations ���0.3�. Both values decrease
with increasing correlations �decreasing ��. Due to the strong
long-term correlations large maxima tend to cluster, i.e.,
there are epochs where considerably more large maximum
values occur than in weakly correlated and uncorrelated data
�24�. As a consequence, there exist also epochs, where the
maximum values are considerably lower than those in
weakly or uncorrelated records. With increasing correlations
���0.3� these periods of small maxima become more pro-
nounced and more frequent, forcing the average centennial
maximum m36 500 and also �Q100� �which is based on annual
maxima� to drop below the quantile q36 500. The correspond-
ing standard deviations �dashed lines and solid lines�, which

FIG. 14. Comparison of the quantile q36 500 �dashed vertical
lines�, the distribution density P36 500�m� of centennial maxima �his-
tograms�, and the distributions of the Q100 values based on 30 years
�squares� and 100 years �circles� for Gaussian distributed �a� uncor-
related and �b� long-term correlated ��=0.4� data; see Fig. 13 and
Eq. �7� for the definitions. Each Q100 value was calculated from a
different segment of length 36 500 days �=100 years, circles� and
10 950 days �=30 years, squares�. The histograms were obtained
from 150 artificial records with N=221.

FIG. 15. Dependence of actual centennial events m36 500 and
estimated centennial events Q100 on the correlation exponent � of
the data; small values of � indicating strong long-term correlations.
The average �actual� centennial maxima �diamonds� and the corre-
sponding upper fluctuations �range of one standard deviation indi-
cated by dashed lines� is compared with the average Q100 value
�squares and circles� and its lower fluctuations �solid lines�. The
Q100 values were obtained from segments of size �a� 10 950 days
�30 years, squares� and �b� 36 500 days �100 years, circles�. The
solid horizontal line in both figures is the 1/36 500 quantile
q36 500=4.034.
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characterize the widths of the histograms of P36 500�m� and
P�Q100� and thus carry the information regarding the accu-
racy of the estimations for short data, increase with decreas-
ing �. For ��0.4 the mean centennial maximum m36 500 and
�Q100� are roughly constant.

The mean estimated centennial maximum �Q100� tends to
overestimate the size of the centennial events for �	0.6.
However, the systematic deviation from m36 500 is even
smaller for �Q100� based on just 30 years of data �Fig. 15�a��
than for 100 years of data �Fig. 15�b��. In addition, for
weakly correlated data, the corresponding standard devia-
tions are lower than �36 500, indicating more reliable estima-
tions of centennial maxima with Q100 for short records. In
conclusion, we find that the quantity Q100 most regarded in
hydrology is a very reliable predictor of typical centennial
events in short records, but the values tend to be systemati-
cally larger than the m36 500 values for data with strong long-
term correlations. However, in real hydrology data such
as river runoff data the correlations are hardly stronger than
�=0.3 �45,46�. So the Q100 value is still a good estimator for
centennial floods.

Finally, we want to study the effects of the long-term
memory on Q100. While there is hardly any memory to be
expected in m36 500 because of the very large R value �see
Figs. 5 and 8�, Q100 should still show some dependence on
the history, because it is based on m365 and �365. Figure 16
shows, for long-term correlated Gaussian distributed data,
the conditional average �Q100�Q100

�0� �� and the conditional
m36 500�m0�, i.e., the average Q100 value following a Q100 of
size Q100

�0� and analogous for m36 500�m0�. While the condi-
tional average Q100 �filled circles� depends on the history, the
conditional m36 500 �squares� fluctuate around the uncondi-
tional mean �solid line�. Although the conditional effect on
Q100 is relatively small, it remains measurable and can help
to improve predictions of extreme events within given peri-
ods of time.

VIII. SUMMARY AND CONCLUSIONS

In summary, we have studied the effect of long-term
correlations in a time series upon extreme value statistics.
Considering series of maxima within segments of size R of
the original data, we have shown numerically that the
maxima distribution functions still converge to the same type
of Gumbel distributions as for uncorrelated data for increas-
ing R.

For finite values of R, however, some deviations occur
especially for originally Gaussian distributed data. Our ex-
tensive numerical simulations suggest that contrary to the
common assumption in extreme value statistics, the maxima

time series turn out to be not independently, identically dis-
tributed numbers. The series of maxima rather exhibit long-
term correlations similar to those in the original data. Most
notably we find that the maxima distribution as well as the
mean maxima significantly depend on the history, in particu-
lar on the value of the previous maximum. In addition, we
have shown that long-term memory can lead to a slight sys-
tematic overestimation of centennial events if the approxima-
tion Q100 is considered. In general, Q100 is a surprisingly
reliable approximation for centennial events especially in
short records.

Nevertheless, further work is needed to test if our findings
are similar in other �non-Gaussian� initial distributions. Our
preliminary results indicate that the effects on Q100 might be
reversed for exponentially distributed data. In addition, we
suggest that memory via the conditional mean maxima and
conditional maxima distributions as well as conditional Q100
values should be considered for an improved risk estimation
in long-term correlated data. It is also plausible that multi-
scaling, which occurs, e.g., in many hydrological time series,
might have an even more significant impact on risk estima-
tion and the prediction of extreme events like floods. Further
work is definitely required to study the effects of multiscal-
ing in the time series upon extreme value statistics.
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FIG. 16. Conditional average Q100 �filled circles� and condi-
tional m36 500 �squares� for Gaussian long-term correlated ��=0.4�
data. The �Q100�Q100

�0� �� values show a correlation based memory
effect indicated by the upward trend, while the m36 500 values seem
to have no memory due to the large R value. The horizontal lines
correspond to the unconditional average values 4.23 and 4.12 for
�Q100� and m36 500, respectively. The Q100 values were calculated
from segments of a length of 36 500 days.
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